Brain computation by assemblies of neurons

Christos H. Papadimitriou^{a,1}, Santosh S. Vempala^b, Daniel Mitropolsky^a, Michael Collins^a, and Wolfgang Maass^c

^aDepartment of Computer Science, Columbia University, New York, NY 10027; ^bCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332; and ^cInstitute of Theoretical Computer Science, Graz University of Technology, 8010 Graz, Austria

Victoria Zhang 2022.5

Motivation

"We do not have a logic for the transformation of neural activity into thought and action."

Richard Axel

What kind of formal system, abstracting the realities of neural activity, would qualify as the sought "logic"?

Motivation

Assembly:

Large, density interconnected populations of excitatory neurons in a brain area, whose loosely synchronized firing in a pattern is coterminous with the subject thinking of a particular concept or idea.

Donald O. Hebb 1949

What kind of formal system, abstracting the realities of neural activity, would qualify as the sought "logic"?

A simple model of the cortex

- Finite number of brain areas
- Each contains *n* excitatory neurons
- Inhibition: only k < n fire
- Some pairs of areas have sparse random connectivity
- All have recurrent random connectivity with probability = p

A simple model of the cortex (cont.)

- Assume neurons fire in discrete steps
- At each step, k < n neurons fire
- Areas can be inhibited/disinhibited
- Hebbian plasticity:

```
If i \rightarrow j
i fires;
next j fires;
the weight of i \rightarrow j is multiplied by (1 + \beta)
```


Main parameters

• $n \sim 10^7$ #excitatory neurons in an area

• $k \sim 10^{3-4}$ maximum # firing neurons in any area

• $p \sim 0.001$ probability of recurrent and afferent synaptic connectivity

• $\beta \sim 0.1$ plasticity coefficient

Random Projection and Cap Primitive (RP&C)

The selection of the k neurons (among n neurons) with highest synaptic input

Dasgupta, Sanjoy, Charles F. Stevens, and Saket Navlakha. "A Neural Algorithm for a Fundamental Computing Problem." *Science* 358, no. 6364 (2017): 793–96. https://doi.org/10.1126/science.aam9868.

Assembly Projection

Assembly Projection (cont.)

The process **converge** exponentially fast, with high probability, to create a new **stable** assembly y

The number of times assembly x fires

Association

After exposure of the composite picture

- The subject learned the association (family member at the Eiffel tower) and the MTL neuron firing rate in response to the Eiffel tower increased.
- MTL units fired to White House and not to American beach volleyball player Kerri Walsh increased firing to Kerri Walsh.

Task 1: Screening

Task 2: Learning

Task 3: Re-screening

Association: If two assemblies imprinting two different entities co-occur, then the overlap of the projected assemblies increases.

Association: If two assemblies imprinting two different entities co-occur, then the overlap of the projected assemblies increases.

The number of times assembly pa(x),pa(y) fires

- Association: If two assemblies imprinting two different entities *co-occur*, then the *overlap* of the projected assemblies *increases*.
- Pattern Completion: the firing of the whole assembly x in response to the firing of a small subset of its cells.

- Association: If two assemblies imprinting two different entities *co-occur*, then the *overlap* of the projected assemblies *increases*.
- Pattern Completion: the firing of the whole assembly x in response to the firing of a small subset of its cells.

- Association: If two assemblies imprinting two different entities *co-occur*, then the *overlap* of the projected assemblies *increases*.
- Pattern Completion: Small parts of the assembly being able to complete, very accurately, the whole assembly.

The number of times assembly x fires

Merge

Areas to be merged

New assembly

The number of times assembly x, y fires

Merge

- Phrases and sentences activates parts of Broca's areas (implicated in syntactic processing)
- Words activates parts of Wernicke's area (implicated in word selection).

Low-level operations

- read (A): identify the assembly which has just fired in area A, and returns null otherwise
- fire(x): fire assembly x in an area A
- disinhibit(A): by default, the excitatory cells in an area A are inhibited unless explicitly disinhibited for a limited time period whose end is marked by the operation inhibit(A)
- for programming purposes, lack in justification

Assembly operations summary

High level operations

- project(y,B,x)
- pattern_complete(x,y)
- associate(x,y)
- merge(x,y,B,z)

Low level operations

- read(x)
- fire(x)
- disinhibit(x)
- inhibit(x)

Discussion

- Q: Are the assembly operations real?
- A: observed/strongly suggested by experiments; can be compiled down to activity of neurons and synapses; mathematically and in simulations.

- Q: How powerful is this system
- A: Capable of implementing, under some assumptions, arbitrary computations on $O(\sqrt{n/k})$ bits of memory.

Discussion (cont.)

- Q: Can the Assembly Calculus help elucidate the mystery of language?
- A: Example of syntax in language generation

```
do in parallel: find-verb(Im, MTL, x), find-subj(Im, MTL, y), find-obj(Im, MTL, z); do in parallel: reciprocal.project(x, WVb, x'), reciprocal.project(y, WSubj, y'), reciprocal.project(x, WObj, z'); merge (x', z', Broca44, p); merge (y', p, Broca45, s).
```


Discussion (cont.)

- Q: Can the Assembly Calculus help elucidate the mystery of language?
- A: Example of sentence articulation (activation of assembly from root to leaf)

Discussion (cont.)

- Q: Can the Assembly Calculus help elucidate the mystery of language?
- A: many aspects still unknown
- Find-tasks implementation;
- Articles in front of nouns (the, an, a);
- Verb tenses (kicks, kicking, kicked);

Thank you