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A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

P& o

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.
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a. b. Pose Estimation

Data acquisition

skeleton frames S, Egocentric alignment
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C. Pose sequence d. RNN VAE
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Outline

* Before RNNs: Perceptron and ConvNets
* RNNs, and Why?

* Some Math
* Forward pass
* Backpropagation refresher
* The RNN backward pass

* Some pros and cons
* On the difficulty of training RNNs
* Applications



Supervised Learning

Labeled data

IIIIIIIIIIIIIII

CHIHUAHUA DACHSHUND BEAGLE /

Pug, Corgi, Golden
retriever...

Prediction
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T

Test data

Golden retriever

Corgi
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SuperVised Learning - Compute objective function

* Measure the error (or distance)

Labeled data * Adjust internal parameters
(weights) to reduce the error

““““““ Train model Prediction
/‘ T < Corgi
Labels :

Pug, Corgi, Golden
retriever... Test data

Golden retriever



Perceptrons
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Multi-layer Perceptrons

] hidden layer 1  hidden laver 2 hidden layer 3
input laver
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From fully connected to convolution

image Fully connected layer image Convolutional layer



Convolutional neural networks (CNNs)
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Fully Connected
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Convolutional neural networks (CNNs)
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Convolutional neural networks

image




Convolutional neural networks




Convolutional neural networks
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Convolutional neural networks
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Convolutional neural networks
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Image understanding with deep CNNs

\o A

Detection Segmentation Recognition

What if the input/output is speech, texts or time-series?
Not all problems can be converted into one with fixed-length inputs and outputs
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Outline

Finding Structure in Time
* RNNs, and Why RNNs |
- JEFFREY L. ELMAN

University of California; San Diego

The question of how to represent time might seem to arise as a special
problem unique to parallel-processing models, if only because the parallel

nature of computation appears to be at odds with the serial nature of tem-
poral events.

The recurrent connections allow the network’s hidden units to see its own

previous output, so that the subsequent behavior can be shaped by previous
responses. These recurrent connections are what give the network memory.



Recurrent Neural Networks (RNNs)

 RNNS take the previous
output or hidden states
as inputs.

* The composite input at O
time t has some v

a
historical information T W FTL | VTS FTS |
about the happenings at SO:) — W or o} O
timeT<t T Untold g

W W W
L SRS

* RNNs are useful as their X X, X, X,
intermediate values
(state) can store
information about past
inputs for a time that is
not fixed a priori

i il
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Sample RNN




What time is i1t?
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What time IS it ?

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049¢9 23/41
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Outline

* Some Math
* Forward pass
* Backpropagation refresher
* The RNN backward pass



Math time: the chain rule
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Feedforward

Hidden units H1 ( )

Zi = E Wij X;

i & Input

Input units
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Feedforward VS Backpropagation

cost function for unit |

d Compare outputs with correct A
answer to get error derivatives 0'5(y| tl) 2
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The RNN backward pass
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R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013 31/41


http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Back Propagation Through Time (BPTT)
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R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013

o€ 0&;
5= 2w

1<t<T

Temporal contribution:
how O at step k affects the cost at step t > k.
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Long -and short- term contributions:
transport the error “in time* from step t
back to step k.
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http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Outline

* Some pros and cons
* On the difficulty of training RNNs
* Applications



RNN applications

* English sentence -> French sentence
* Image Captioning

Vision Language
Deep CNN Generating RNN
@ A group of people
= = shopping at an outdoor
& P market.
9
@ P There are many
® vegetables at the
& fruit stand.

Sutskever, I. Vinyals, O. & Le. Q. V. Sequence to sequence learning with neural networks. In Proc. Advances in Neural
Information Processing Systems 27 3104-3112 (2014). 34l41



time sequence
(D: 2k x T)

VAME model:
bidirectional RNN VAE
(time window: 30)
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Encoder

Internal state at each time step h;
yn undates:

htf = tanh(fd)(xt, ht—l) )
h. =h/ +h!

h? = tanh(f(;’)(xta ht+1)-,.

hf: hidden info of the forward pass

h?: hidden info of the backward pass
f: gated recurrent units as transition

func
h; = b + h?

- - - - - - - - - - - - - - — -y

Approximate posterior: q4(2Z;|x;) s, 2,
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Vanishing and the Exploding Gradient

o1 - Recall:
Long -and short- term contributions:
transport the error “in time‘ from step t back to step k.
9%y = H H W diag(o'(xi—1))
an- rec g 1i—1

t>i> k Xi-1 t>i>k

What time ?

Shrink to zero or Explode to infinity

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013 36/41


http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Vanishing and the Exploding Gradient

- . Recall:

Long -and short- term contributions:
transport the error “in time‘ from step t back to step k.

I
-

What time ?

= ] Wh.diag(o'(xi-1))

t2i>k t>i>k

Small gradients

Internal weights barely change

The earlier layers fail to do any learning

RNN doesn’t learn the long-range dependencies
across time steps

B wNE

\ 4

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013 37141
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Vanishing and the Exploding Gradient

Long -and short- term contributions:
transport the error “in time‘ from step t back to step k.

T 2 = ] Widiag(e'(xi)

It is sufficient for the largest eigenvalue A1 of the W,....to be < 1 for long term components to vanish
(ast — o),

and necessary for it to be > 1 for gradients to explode.

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013
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Vanishing and the Exploding Gradient

Sigmoid function and it's derivative:

L0 — alx)

* Activation functions like sigmoid. .
For larger inputs, it saturates at o or
1 with a derivative very close to o,
leading to ~ no gradient at back prob .

0.6
0.4 1

0.2 4

* Initial weights assigned to the
network generate some large loss.

Gradients accumulate and eventually
result in l[arge updates to the
network weights. Overflow and NaN
values



Solutions

* Proper Weight Initialization
* The variance of outputs of each layer should = the variance of its inputs.

* The gradients should have equal variance before and after flowing through a
layer in the reverse direction.

* Using Non-saturating Activation Functions
* e.g. RelLU, Leaky RelLU

* Batch Normalization
* let the model learn the optimal scale and mean of each of the layer’s inputs.

* Gradient Clipping
* The threshold is a hyperparameter we can tune

Loffe ,Szegedy, Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shift, ArXiv 2015
R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural networks, ICML 2013
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Solutions & more

* Gated Recurrent Units (GRUs)

* Long Short-Term Memory (LSTMs)
* Residual/skip connections

* RNN VAE

* Bidirectional



Thanks



Multi-Layer Network Demo

INPUT + — 1 HIDDEN LAYER OUTPUT

Which properties do Test loss 0.020

you want to feed in? + - Training loss 0.013 \
4 neurons

WM * This is the output
from ormg medron. I
Hover to see it o
. larger.
sin(X.)
Colors shows
. data, neuron and F I _l
Sini%) weight values. ! “ !

[J Showtestdata [] Discretize output

http://playground.tensorflow.org/ i


http://playground.tensorflow.org/

Median IT multi-unit explained variance (%)

How do error signals backpropagate in brains?

IT resemblance of model representational

geometry (Kendall T-RDM correlation)
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