
Intro to LLMs
Victoria Zhang
Feb 10, 2025

Outline

• LM Background
• LLM Modeling and Pre-training
• Adapt LLMs to Downstream Tasks
• More about LLMs

LM Background
From LMs to LLMs

Language Models (LMs)

• Corpus = raw text data
• Token = word & punctuation 𝑥𝑥𝑙𝑙
• Vocabulary = a set of tokens, 𝑥𝑥1, … , 𝑥𝑥𝐿𝐿

• LM = probability distribution over a sequence of tokens 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝐿𝐿)

• Generation = sample from the distribution 𝑥𝑥1:𝐿𝐿~ 𝑝𝑝

Autoregressive LMs

• Joint distribution → chain rule (efficient, e.g., via feedforward NN)

𝑝𝑝(𝑥𝑥1:𝐿𝐿) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2 ∣ 𝑥𝑥1)𝑝𝑝(𝑥𝑥3 ∣ 𝑥𝑥1, 𝑥𝑥2)⋯𝑝𝑝(𝑥𝑥𝐿𝐿 ∣ 𝑥𝑥1:𝐿𝐿−1) = �
𝑖𝑖=1

𝐿𝐿

𝑝𝑝(𝑥𝑥𝑖𝑖 ∣ 𝑥𝑥1:𝑖𝑖−1)

Autoregressive LMs generation

• Generation:

for 𝑖𝑖 = 1, … , 𝐿𝐿:
𝑥𝑥𝑖𝑖 ∼ 𝑝𝑝 𝑥𝑥𝑖𝑖 𝑥𝑥1:𝑖𝑖−1

1/𝑇𝑇

where 𝑇𝑇 ≥ 0 is a temperature parameter that controls how much randomness:
• 𝑇𝑇 = 0: deterministically choose the most probable token 𝑥𝑥𝑖𝑖 at each position 𝑖𝑖
• 𝑇𝑇 = 1: sample “normally” from the pure language model
• 𝑇𝑇 = ∞: sample from a uniform distribution over the entire vocabulary

• Prompt 𝑥𝑥1:𝑖𝑖 = prefix
• Completion 𝑥𝑥𝑖𝑖+1:𝐿𝐿= conditional generation

Towards Large LMs (LLMs)

context

• N-gram models

if n is too small, or too big?

• Neural LMs

• Recurrent neural networks (RNNs, LSTMs)
• Transformers (TFs)

effectively 𝑛𝑛 = ∞

𝑛𝑛 = 3

Towards Large LMs (LLMs)

N-gram RNN / LSTM Transformer

Context n ∞ n

Training - statistically Infeasible Feasible Feasible

Training -
computationally

Efficient Inefficient Still inefficient, but
better due to GPUs

Application Limited to speech
recognition & machine
translation

Speech recognition,
machine translation,
text completion, …

Modern language tasks:
translation, Q&A,
arithmetic, …

Modern language tasks: prompting in disguise

LLM Timeline
↑Open-source

↓Closed-source

Pre-trained
Instruction-tuned

LLM Modeling and Pre-training
Transformers and LLMs

Transformers

• Key components:
• Self-attention
• Positional encoding
• Masked training

• LLM architectures:
• Encoder-only
• Decoder-only
• Encoder-decoder

Encoder-Only

• Tokens → contextual embeddings
𝒱𝒱𝐿𝐿 → ℝ𝑑𝑑×𝐿𝐿

• Text classification, e.g. positive / negative reviews

• Examples: BERT, RoBERTa

Encoder-Only: BERT-Large
• Transformer block x 24
• Bidirectional
• Pre-training:

• Masked language modeling (MLM)
• Next sentence prediction (NSP)

• Some hyper-params
• 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1024
• 𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 16
• 𝐿𝐿 = 512
• #params: 355M

Decoder-Only

• Tokens → contextual embeddings & next token (distribution)

• Text completion, article generation

• Examples: GPT-2, GPT-3, …

Decoder-Only: GPT-3

• Transformer block x 96
• Sparse Transformer
• Pre-training:

• next token prediction

• Some hyper-params
• 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 12288
• 𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 96
• 𝐿𝐿 = 2048
• #params: 175B

96x

Encoder-Decoder

• Full-transformer
• Tokens → tokens

• Translation
• Examples: BART, T5 …

Comparing LLMs
Encoder-only Decoder-only Encoder-decoder

Models BERT, ViT GPT-3, ChatGPT, Llama,
DeepSeek

BART, T5, Google Gemini
(Probably)

Pretraining Masked Language
Modelling (MLM)

Next Token Prediction Task-dependent

Bidirectional Yes No In encoder

Casual No Yes Yes

Generation No Yes Yes

Outputs Bidirectional embedding Unidirectional
embedding & next token

Input embedding &
output sequences

Ad-hoc Training Yes No Yes

Applications Classification Generation Translation

Why are more LLMs decoder-only?
Short Answer: efficient, easy to train, better adaptation

The popularity of decoder-only (1/2)

• Cost of Training
• ED need to perform multitask finetuning (which is basically instruction

finetuning) on labeled data and it could be very expensive

• In-Context Learning from Prompts
• prompting introduced a gradient to the attention weight. decoder-only

models does not need to be translated into an intermediate context first
before being used for generative tasks

• Efficiency Optimization
• in decoder-only models, the (K) and (V) matrices from previous tokens can be

reused (cached) for subsequent tokens during the decoding process -> faster
generation during inference

The popularity of decoder-only (2/2)

• Autoregressive vs Bidirectional Attention

Adapt LLMs to Downstream
Tasks
Fine-tunning, probing, and prompting

Towards Task-Specific LLMs

• Decoder-only models, e.g. GPT-3 is task-agnostic
• Not for any downstream task

• Only pre-trained on next token prediction
• Different formatting
• Domain shift
• Human preference

Adaptation

• Supervised learning
• Fine-tuning
• Lightweight fine-tuning
• Probing

• In-context learning (prompting)
• Zero-shot
• One-shot
• Few-shot

Probing

• Probe = prediction head
• Mostly on encoder-only
• Pooling:

• CLS token
• Average over tokens

Freeze
Optimize

Fine-tunning

• Smaller learning rate
• LLMs for every task - expensive

Freeze
Optimize

Lightweight Fine-tunning

• Optimize <1% parameters
• Prompt tunning

• Append learnable embeddings

• Prefix tunning
• Add learnable attention weights

• Adapter tunning
• 2-layer NN between fixed

transformer blocks

• Others (LoRA, BitFit, …)

Freeze
Optimize

Prompting

• Zero-shot transferable (passable) with
• Task description
• Examples (input-output pairs)

• Prompt engineering

Prompting

• Arithmetic

• Translation

Prompting

• Grammar correction

Selective Models
Scaling laws, GPT, DeepSeek and Costs

Scaling Laws (OpenAI)

• Model size (N): 768 - 1.5 billion
non-embedding parameters.

• Dataset size (D): 22M -23B tokens.
• Model shape: depth, width,

attention heads, and feed-forward
dimension.

• Context length: 1024 for most runs
• Batch size: 219 for most runs.
• L be the test cross-entropy loss.
• C be the amount of compute

used to train a model.

Performance depends strongly on
model scale (N, D, C), weakly on
model shape

GPT 3x → GPT 4o

• Unimodal → multimodal (text, audio, image, and video)
• #params: 175B → 1.8 trillion
• context window size 𝐿𝐿 = 2048 tokens → 128k tokens.
• Reasoning: bottom 10% → top 10% passing candidates
• MoE

DeepSeek-V3

• Architecture: Innovative Load Balancing Strategy and Training
Objective

• DeepSeek-V2 + auxiliary-loss-free strategy for load balancing
• Multi-Token Prediction (MTP) objective

• Pre-Training: Towards Ultimate Training Efficiency
• FP8 mixed precision training framework
• Overcame the communication bottleneck in cross-node MoE training
• 2.664M H800 GPU hours (DeepSeek-V3 on 14.8T tokens)

• Post-Training: Knowledge Distillation from DeepSeek-R1
• distill reasoning capabilities from the long-Chain-of-Thought (CoT) model

DeepSeek-R1

• Architecture:
• Training Only the Important Parts (via MoE)

• 5% of the model’s parameters were trained per token- > 95% reduction in GPU usage
• Faster and Cheaper AI with KV Compression

• Pre-Training:
• No Fancy Chips, Just Smart (Low-level) Optimizations

• Post-Training:
• Smarter Learning with Reinforcement Learning (RL)

• Group Relative Policy Optimization (GRPO)

DeepSeek R1 vs GPT4o

• #params: 671B vs. 1.8 trillion
• context window size 𝐿𝐿 = 2048 tokens vs. 2048 tokens
• # transformer: 61 vs. 120

More about LLMs
What is the future?

Data

• Effective size
• Privacy
• Fairness
• Contamination
• Ecosystem

Multi-Modality

• Input + output = multi-modal
• T2I: Dall-E, Stable diffusion
• I2T: GPT-4V

• Input = multi-modal
• CLIP

• Output = multi-modal

More on LLMs…

• Parallelism
• Scaling law…(?)
• Other than transformers
• Ethical issues

Resources

• Courses
• https://stanford-cs324.github.io/winter2022/
• https://stanford-cs324.github.io/winter2023/

• Review papers
• https://arxiv.org/pdf/2303.18223
• https://arxiv.org/pdf/2307.06435

• Paper lists
• https://github.com/Hannibal046/Awesome-LLM

• Posts
• https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-

590c903e4789

https://stanford-cs324.github.io/winter2022/
https://stanford-cs324.github.io/winter2023/
https://arxiv.org/pdf/2303.18223
https://arxiv.org/pdf/2307.06435
https://github.com/Hannibal046/Awesome-LLM
https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-590c903e4789
https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-590c903e4789

Thank You
Q&A

	Intro to LLMs
	Outline
	LM Background
	Language Models (LMs)
	Autoregressive LMs
	Autoregressive LMs generation
	Towards Large LMs (LLMs)
	Towards Large LMs (LLMs)
	LLM Timeline
	LLM Modeling and Pre-training
	Transformers
	Encoder-Only
	Encoder-Only: BERT-Large
	Decoder-Only
	Decoder-Only: GPT-3
	Encoder-Decoder
	Comparing LLMs
	The popularity of decoder-only (1/2)
	The popularity of decoder-only (2/2)
	Adapt LLMs to Downstream Tasks
	Towards Task-Specific LLMs
	Adaptation
	Probing
	Fine-tunning
	Lightweight Fine-tunning
	Prompting
	Prompting
	Prompting
	Selective Models
	Scaling Laws (OpenAI)
	GPT 3x → GPT 4o
	DeepSeek-V3
	DeepSeek-R1
	DeepSeek R1 vs GPT4o
	More about LLMs
	Data
	Multi-Modality
	More on LLMs…
	Resources
	Thank You

