Intro to LLMs

Victoria Zhang

Feb 10, 2025

Outline

- LM Background
- LLM Modeling and Pre-training
- Adapt LLMs to Downstream Tasks
- More about LLMs

LM Background

From LMs to LLMs

Language Models (LMs)

- Corpus = raw text data
- **Token** = word & punctuation x_l
- **Vocabulary** = a set of tokens, $x_1, ..., x_L$
- LM = probability distribution over a sequence of tokens $p(x_1, ..., x_L)$

```
p(\text{the, mouse, ate, the, cheese}) = 0.02, p(\text{the, cheese, ate, the, mouse}) = 0.01, p(\text{mouse, the, the, cheese, ate}) = 0.0001.
```

• **Generation** = sample from the distribution $x_{1:L} \sim p$

Autoregressive LMs

Joint distribution → chain rule (efficient, e.g., via feedforward NN)

$$p(x_{1:L}) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_L \mid x_{1:L-1}) = \prod_{i=1}^{L} p(x_i \mid x_{1:i-1})$$

```
p({\rm the,\,mouse,\,ate,\,the,\,cheese}) = p({\rm the}) p({\rm mouse}\mid{\rm the}) p({\rm ate}\mid{\rm the,\,mouse}) p({\rm the}\mid{\rm the,\,mouse,\,ate}) p({\rm cheese}\mid{\rm the,\,mouse,\,ate,\,the}).
```

Autoregressive LMs generation

Generation:

for
$$i = 1, ..., L$$
:
 $x_i \sim p(x_i \mid x_{1:i-1})^{1/T}$

where $T \ge 0$ is a <u>temperature</u> parameter that controls how much randomness:

- T=0: deterministically choose the most probable token x_i at each position i
- T = 1: sample "normally" from the pure language model
- $T = \infty$: sample from a uniform distribution over the entire vocabulary
- Prompt $x_{1:i}$ = prefix
- Completion $x_{i+1:L}$ = conditional generation

Towards Large LMs (LLMs)

N-gram models

```
p(cheese | the, mouse, ate, the) = p(cheese | ate, the). p(x_i | x_{1:i-1}) = p(x_i | \underline{x_{i-(n-1):i-1}}).
if n is too small, or too big?
```

Neural LMs

 $p(\text{cheese} \mid \text{ate}, \text{the}) = \text{some-neural-network}(\text{ate}, \text{the}, \text{cheese}). \quad p(x_i \mid x_{1:i-1}) = p(x_i \mid x_{i-(n-1):i-1}).$

- Recurrent neural networks (RNNs, LSTMs) effectively $n = \infty$
- Transformers (TFs)

Towards Large LMs (LLMs)

	N-gram	RNN / LSTM	Transformer
Context	n	∞	n
Training - statistically	Infeasible	Feasible	Feasible
Training - computationally	Efficient	Inefficient	Still inefficient, but better due to GPUs
Application	Limited to speech recognition & machine translation	Speech recognition, machine translation, text completion,	Modern language tasks: translation, Q&A, arithmetic,

Modern language tasks: prompting in disguise

LLM Timeline

↓Closed-source

LLM Modeling and Pre-training

Transformers and LLMs

Transformers

Figure 1: The Transformer - model architecture.

- Key components:
 - Self-attention
 - Positional encoding
 - Masked training
- LLM architectures:
 - Encoder-only
 - Decoder-only
 - Encoder-decoder

Encoder-Only

Tokens → contextual embeddings

$$\mathbf{x}_{1:L} \Rightarrow \varphi(\mathbf{x}_{1:L}). \qquad \mathcal{V}^L \rightarrow \mathbb{R}^{d \times L}$$

• Text classification, e.g. positive / negative reviews

 $[[CLS], the, movie, was, great] \Rightarrow positive.$

• Examples: BERT, RoBERTa

 $\text{BERT}(x_{1:L}) = \text{TransformerBlock}^{24}(\text{EmbedTokenWithPosition}(x_{1:L}) + \text{SentenceEmbedding}(x_{1:L})) \in \mathbb{R}^{d \times L}$

Encoder-Only: BERT-Large

- Transformer block x 24
- Bidirectional
- Pre-training:
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP)
- Some hyper-params
 - $d_{model} = 1024$
 - $n_{head} = 16$
 - L = 512
 - #params: 355M

Decoder-Only

Tokens → contextual embeddings & next token (distribution)

$$x_{1:i} \Rightarrow \varphi(x_{1:i}), p(x_{i+1} \mid x_{1:i}).$$

Text completion, article generation

$$[[CLS], the, movie, was] \Rightarrow great$$

• Examples: GPT-2, GPT-3, ...

GPT-3($x_{1:L}$) = TransformerBlock⁹⁶(EmbedTokenWithPosition($x_{1:L}$))

Decoder-Only: GPT-3

- Transformer block x 96
- Sparse Transformer
- Pre-training:
 - next token prediction
- Some hyper-params
 - $d_{model} = 12288$
 - $n_{head} = 96$
 - L = 2048
 - #params: 175B

Encoder-Decoder

- Full-transformer
- Tokens → tokens

$$x_{1:L} \Rightarrow \varphi(x_{1:L}), p(y_{1:L} \mid \varphi(x_{1:L})).$$

- Translation
- Examples: BART, T5 ...

Comparing LLMs

	Encoder-only	Decoder-only	Encoder-decoder
Models	BERT, ViT	GPT-3, ChatGPT, Llama, DeepSeek	BART, T5, Google Gemini (Probably)
Pretraining	Masked Language Modelling (MLM)	Next Token Prediction	Task-dependent
Bidirectional	Yes	No	In encoder
Casual	No	Yes	Yes
Generation	No	Yes	Yes
Outputs	Bidirectional embedding	Unidirectional embedding & next token	Input embedding & output sequences
Ad-hoc Training	Yes	No	Yes
Applications	Classification	Generation	Translation

Why are more LLMs decoder-only?
Short Answer: efficient, easy to train, better adaptation

The popularity of decoder-only (1/2)

Cost of Training

• ED need to perform multitask finetuning (which is basically instruction finetuning) on labeled data and it could be very expensive

In-Context Learning from Prompts

 prompting introduced a gradient to the attention weight. decoder-only models does not need to be translated into an intermediate context first before being used for generative tasks

Efficiency Optimization

• in decoder-only models, the (K) and (V) matrices from previous tokens can be reused (cached) for subsequent tokens during the decoding process -> faster generation during inference

The popularity of decoder-only (2/2)

Autoregressive vs Bidirectional Attention

Adapt LLMs to Downstream Tasks

Fine-tunning, probing, and prompting

Towards Task-Specific LLMs

- Decoder-only models, e.g. GPT-3 is task-agnostic
- Not for any downstream task
 - Only pre-trained on next token prediction
 - Different formatting
 - Domain shift
 - Human preference

Adaptation

- Supervised learning
 - Fine-tuning
 - Lightweight fine-tuning
 - Probing
- In-context learning (prompting)
 - Zero-shot
 - One-shot
 - Few-shot

Probing

- Probe = prediction head
- Mostly on encoder-only
- Pooling:
 - CLS token
 - Average over tokens

Fine-tunning

- Smaller learning rate
- LLMs for every task expensive

Lightweight Fine-tunning

- Optimize <1% parameters
- Prompt tunning
 - Append learnable embeddings
- Prefix tunning
 - Add learnable attention weights
- Adapter tunning
 - 2-layer NN between fixed transformer blocks
- Others (LoRA, BitFit, ...)

Prompting

- Zero-shot transferable (passable) with
 - Task description
 - Examples (input-output pairs)
- Prompt engineering

Prompting

Arithmetic

Q: What is 556 plus 497?

A: 1053

Translation

Mein Haus liegt auf dem Hügel. = My house is on the hill.

Keinesfalls dürfen diese für den kommerziellen Gebrauch verwendet werden. = In no case
may they be used for commercial purposes.

Prompting

Grammar correction

Poor English input: I eated the purple berries.

Good English output: I ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it.

Good English output: Thank you for choosing me as your designer. I appreciate it.

Poor English input: The mentioned changes have done. or I did the alteration that you

requested. or I changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or I made the alteration that you

requested. or I changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output: I would be happy to work with you on another project.

Selective Models

Scaling laws, GPT, DeepSeek and Costs

Scaling Laws (OpenAI)

- Model size (N): 768 1.5 billion non-embedding parameters.
- Dataset size (D): 22M -23B tokens.
- Model shape: depth, width, attention heads, and feed-forward dimension.
- Context length: 1024 for most runs
- Batch size: 2¹⁹ for most runs.
- L be the test cross-entropy loss.
- **C** be the amount of compute used to train a model.

Performance depends strongly on model scale (**N**, **D**, **C**), weakly on model shape

GPT $3x \rightarrow GPT 40$

- Unimodal → *multi*modal (text, audio, image, and video)
- #params: 175B → **1.8 trillion**
- context window size L = 2048 tokens \rightarrow **128k** tokens.
- Reasoning: bottom 10% → *top 10%* passing candidates
- MoE

DeepSeek-V3

- Architecture: Innovative Load Balancing Strategy and Training Objective
 - DeepSeek-V2 + auxiliary-loss-free strategy for load balancing
 - Multi-Token Prediction (MTP) objective
- Pre-Training: Towards Ultimate Training Efficiency
 - FP8 mixed precision training framework
 - Overcame the communication bottleneck in cross-node MoE training
 - 2.664M H800 GPU hours (DeepSeek-V3 on 14.8T tokens)
- Post-Training: Knowledge Distillation from DeepSeek-R1
 - distill reasoning capabilities from the long-Chain-of-Thought (CoT) model

DeepSeek-R1

- Architecture:
 - Training Only the Important Parts (via MoE)
 - 5% of the model's parameters were trained per token- > 95% reduction in GPU usage
 - Faster and Cheaper Al with KV Compression
- Pre-Training:
 - No Fancy Chips, Just Smart (Low-level) Optimizations

- Post-Training:
 - Smarter Learning with Reinforcement Learning (RL)
 - Group Relative Policy Optimization (GRPO)

DeepSeek R1 vs GPT4o

- #params: 671B vs. 1.8 trillion
- context window size L = 2048 tokens vs. 2048 tokens
- # transformer: 61 vs. 120

More about LLMs

What is the future?

Data

- Effective size
- Privacy
- Fairness
- Contamination
- Ecosystem

Multi-Modality

- Input + output = multi-modal
 - T2I: Dall-E, Stable diffusion
 - I2T: GPT-4V
- Input = multi-modal
 - CLIP
- Output = multi-modal

More on LLMs...

- Parallelism
- Scaling law...(?)
- Other than transformers
- Ethical issues

Resources

- Courses
 - https://stanford-cs324.github.io/winter2022/
 - https://stanford-cs324.github.io/winter2023/
- Review papers
 - https://arxiv.org/pdf/2303.18223
 - https://arxiv.org/pdf/2307.06435
- Paper lists
 - https://github.com/Hannibal046/Awesome-LLM
- Posts
 - https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-590c903e4789

Thank You

Q&A