Intro to LLMs

Victoria Zhang
Feb 10, 2025

Outline

* LM Background

* LLM Modeling and Pre-training

* Adapt LLMs to Downstream Tasks
* More about LLMs

LM Background

From LMs to LLMs

Language Models (LMs)

Corpus = raw text data
Token = word & punctuation x;
Vocabulary = a set of tokens, x4, ..., x;

LM = probability distribution over a sequence of tokens p (x4, ...

p(the, mouse, ate, the, cheese) = 0.02,
p(the, cheese, ate, the, mouse) = 0.01,

p(mouse, the, the, cheese, ate) = 0.0001.

Generation = sample from the distribution x;..,~ p

) xL)

Autoregressive LMs

e Joint distribution = chain rule

L
p(x1.1) = p(x)p(x2 | X1)p(x3 | X1, %2) - p(xp, | X1.1-1) = Hp(xi | X1:1-1)

=1

p(the, mouse, ate, the, cheese) = p(the)
p(mouse | the)
p(ate | the, mouse)
p(the | the, mouse, ate)
p(cheese | the, mouse, ate, the).

Autoregressive LMs generation

e Generation:

fori =1, ..., L:
x; ~ p(x; | x93)7
where T = 0 is a temperature parameter that controls how much randomness:
* T = 0: deterministically choose the most probable token x; at each position i

T = 1:sample “normally” from the pure language model
* T = co: sample from a uniform distribution over the entire vocabulary

* Prompt x,.; = prefix

* Completion x;,{.;=conditional generation

T=0
the, mouse, ate~ the, cheese
L L 1 1 L1 1 Ll [.|

prompt completion

Towards Large LMs (LLMs)

* N-gram models

p(cheese | the, mouse, ate, the) = p(cheese | ate, the). P(Xi | X1:i-1) = P(Xi | Xicn—1):i—1)-

if n is too small, or too big? n=3

* Neural LMs

p(cheese | ate, the) = some-neural-network(ate, the, cheese). p(Xi | X1:i—1) = P(Xi | Xi—n-1):i-1)-

context
* Recurrent neural networks (RNNs, LSTMS) effectivelyn = oo

* Transformers (TFs)

Towards Large LMs (LLMs)

N-gram RNN /LSTM Transformer
Context n 00 n
Training - statistically Infeasible Feasible Feasible
Training - Efficient Inefficient Still inefficient, but
computationally better due to GPUs
Application Limited to speech Speech recognition, Modern language tasks:
recognition & machine machine translation, translation, Q&A,
translation text completion, ... arithmetic, ...

Modern language tasks: prompting in disguise

LLM Timeline

Pre-trained

Instruction-tuned

*Open-source

&» CodeGen (Mar)
IO} GPT-NeoX-20B (Apr)

/ % Alpaca (Mar)

£ HuaTuo (apr)

0 Vicuna

\

09 LLaMA (Feb) \
b Xuan Yuan 2.0 (May)

= U MPT (Jun)
UL2 (May)
% TK-Instruct (May) \7 Q Koala (vay) &> CodeT5+
Q mTO0 (Dec) O() GLM (oct) =. Wizard-LM ~ StarCoder
0Q OPT-IML S) B wizard-Coder (jun) O LLaMA 2 (1ui)
[GTS (Oct)] [S mT5 (Oct)] 00 Galactica (Nov) \ Goat / (X Code Llama (Aug) /
| | | | | |
| | | | | |
2019 2020 2021 2022 2023 2024

[@ GPT-3 (May)]

[@ WebGPT (Dec)]

/ & codex (u) \
ERNIE 3.0

A2 Jurassic-1 (Aug)
7 HypercLOVA (sep)
=~ Yuan 1.0 (Oct)

o Gopher (Dec)
ERNIE 3.0 Titan
5 6lam

\G LaMDA Y,

o Sparrow (sep)
{5 FLAN-U-PaLM (0ct)
@ chatGPT (nov)

[B MT-NLG gan))

o AlphaCode (Feb)
© chinchilla (ar)
P

«2 PalM (apr)

@ AlexaTM (Aug)
5 U-PALM (0ct

. ()BLOOM(Nov)

VvClosed-source

5 Bard (0ct)

2 PanGu-£ (Mar)
& BloombergGPT

@ P14

A\ Claude

P

7 PaLM2 (May)
© Gemini peq)

LLM Modeling and Pre-training

Transformers and LLMs

Transformers

OQutput
Probabilities

Add & Norm

Feed
Forward

Add & Norm J=~

g Multi-Head

Feed Attention

Forward D) Nx
]
Nix Add & Norm
(_>l Add & Norm TEE
Multi-Head Multi-Head
Attention Attention
tr 2 1t
_ J/ . —)
Positional o & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

* Key components:
e Self-attention
* Positional encoding
* Masked training

* LLM architectures:
* Encoder-only
* Decoder-only
* Encoder-decoder

Encoder-Only

* Tokens = contextual embeddings
X1.L = Q(X1.1). YL - RAXL

* Text classification, e.g. positive / negative reviews

[[CLS], the, movie, was, great] = positive.

* Examples: BERT, RoBERTa

BERT(x;.1) = TransformerBlock24(EmbedTokenWithPosition(x1;L) + SentenceEmbedding(x;.;)) € R,

Encoder-Only: BERT-Large

e Transformer block x 24

ﬁ Mask LM Mask LM \ Bidirectional
P 2 »

, , * Pre-training:
)] 0] - + Masked language modeling (MLM)

BERT * Next sentence prediction (NSP)
* Some hyper-params

Eiis E E E E’ | .. E ’
[CLS] 1 N [SEP] 1 M ° dmodel — 1024_
oL L5) B ey
[CLS] Tok1 | .. | Tok N [SEP] Tok1 | . TokM * nhead = 16
| | o =
| E— L =512
Masked Sentence A Masked Sentence B * #params: 355M

2 »
Unlabeled Sentence A and B Pair

Decoder-Only

* Tokens - contextual embeddings & next token (distribution)

X1 = ©(X1:i), PKie1 | X1:1)-

* Text completion, article generation
[[CLS], the, movie, was] = great

 Examples: GPT-2, GPT-3, ...

GPT-3(x;..) = TransformerBlock’®(EmbedTokenWithPosition(x;...))

Decoder-Only: GPT-3

Prechttion Cl;lrgssilf(ier o TraHSfOrmer blOCkX96

} * Sparse Transformer

Layer Norm
: * Pre-training:

Feed Forward o neXt tOken pl’edICtIOI’]

96x f

— * Some hyper-params

ayer Norm
$ ¢ dmodel = 12288

Seif Auention * Nheqa = 96

L ; e [= 2048

Text & Position Embed ° #p arams: 1 75 B

Encoder-Decoder

* Full-transformer
* Tokens - tokens
Xi.L = Q(X1:L), (YL | @(X1:L))-
* Translation
* Examples: BART, T5 ...

Comparing LLMs

Encoder-only

Decoder-only

Encoder-decoder

Models

Pretraining

Bidirectional
Casual
Generation

Outputs

Ad-hoc Training
Applications

BERT, ViT

Masked Language
Modelling (MLM)

Yes
No
No

Bidirectional embedding

Yes

Classification

GPT-3, ChatGPT, Llama,
DeepSeek

Next Token Prediction

No
Yes
Yes

Unidirectional
embedding & next token

No

Generation

BART, T5, Google Gemini
(Probably)

Task-dependent

In encoder
Yes
Yes

Input embedding &
output sequences

Yes

Translation

Why are more LLMs decoder-only?

Short Answer: efficient, easy to train, better adaptation

The popularity of decoder-only (1/2)

* Cost of Training

* ED need to perform multitask finetuning (which is basically instruction
finetuning) on labeled data and it could be very expensive

* In-Context Learning from Prompts

* prompting introduced a gradient to the attention weight. decoder-only
models does not need to be translated into an intermediate context first
before being used for generative tasks

* Efficiency Optimization

 in decoder-only models, the (K) and (V) matrices from previous tokens can be
reused (cached) for subsequent tokens during the decoding process -> faster
generation during inference

The popularity of decoder-only (2/2)

e Autoregressive vs Bidirectional Attention

Causal Decoder

i LU
]
a L) J
_E .
g m
) |) S— N—
I m caudal decoder

:

' = "y
LY r][
T o

NC decoder
-

L1
r

’ _l‘—
e

E

]

M on-causal Decoder

as

|

]

Dacoder

an encode decoder

Encoder-Decoder

— ——

r—, | —

—

.~ wFs on

— e
1 Bm an encoder decoder
E nicnder Drernder

Adapt LLMs to Downstream
Tasks

Fine-tunning, probing, and prompting

Towards Task-Specific LLMs

* Decoder-only models, e.g. GPT-3 is task-agnostic

* Not for any downstream task
* Only pre-trained on next token prediction
* Different formatting
* Domain shift
* Human preference

Adaptation

* Supervised learning
* Fine-tuning
* Lightweight fine-tuning
* Probing
* In-context learning (prompting)
* Zero-shot

e One-shot
* Few-shot

Probing

Freeze Output

Optimize A
i

* Probe = prediction head
* Mostly on encoder-only

Transformer

* Pooling:
4 e CLS token
Prompt * Average over tokens

T

Input

)
—/

Fine-tunning

Freeze Output
Optimize

Prediction head

4
| Predictionhead
£
* Smaller learning rate
" * LLMs for every task - expensive

Prompt

T

Input

)
—

Lightweight Fine-tunning

Output . .
Optimize * Optimize <1% parameters

* Prompt tunning
* Append learnable embeddings

Light-

e * Prefix tunning
* Add learnable attention weights

params

* Adapter tunning
[Prompt]
varams 2-layer NN between fixed

transformer blocks

* Others (LoRA, BitFit, ...)

Input

Prompting

* Zero-shot transferable (passable) with
* Task description
* Examples (input-output pairs)

* Prompt engineering

Prompting

* Arithmetic
Q: What is 556 plus 497?

A:
 Translation

Mein Haus liegt auf dem Hugel. = My house is on the hill.
Keinesfalls durfen diese fur den kommerziellen Gebrauch verwendet werden. =

Prompting

e Grammar correction

Poor English input: | eated the purple berries.

Good English output: | ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it.

Good English output: Thank you for choosing me as your designer. | appreciate it.
Poor English input: The mentioned changes have done. or | did the alteration that you
requested. or | changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or | made the alteration
that you

requested. or | changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output:

Selective Models

Scaling laws, GPT, DeepSeek and Costs

Scaling Laws (OpenAl)

* Model size (N): 768 - 1.5 billion
non-embedding parameters.

* Dataset size (D): 22M -23B tokens.

* Model shape: depth, width,
attention heads, and feed-forward Performance depends strongly on
dimension. model scale (N, D, C), weakly on

e Context length: 1024 for most runs Modelshape
e Batch size: 21° for most runs.
* L be the test cross-entropy loss.

* C be the amount of compute
used to train a model.

GPT 3x > GPT 40

* Unimodal » multimodal (text, audio, image, and video)
* #params: 175B > 1.8 trillion

e context window size L = 2048 tokens > 128k tokens.

* Reasoning: bottom 10% - top 10% passing candidates
* MoE

DeepSeek-V3

* Architecture: Innovative Load Balancing Strategy and Training
Objective
* DeepSeek-V2 + auxiliary-loss-free strategy for load balancing
* Multi-Token Prediction (MTP) objective

* Pre-Training: Towards Ultimate Training Efficiency
* FP8 mixed precision training framework

* Overcame the communication bottleneck in cross-node MoE training
e 2.664M H800 GPU hours (DeepSeek-V3 on 14.8T tokens)

* Post-Training: Knowledge Distillation from DeepSeek-R1
 distill reasoning capabilities from the long-Chain-of-Thought (Col) model

DeepSeek-R1

 Architecture:

* Training Only the Important Parts (via MoE)
* 5% of the model’s parameters were trained per token- >95% reduction in GPU usage
* Faster and Cheaper Al with KV Compression

* Pre-Training:
* No Fancy Chips, Just Smart (Low-level) Optimizations

* Post-Training:
* Smarter Learning with Reinforcement Learning (RL)
* Group Relative Policy Optimization (GRPQO)

DeepSeek R1 vs GPT4o0

* #params: 671B vs. 1.8 trillion
e context window size L = 2048 tokens vs. 2048 tokens

 #transformer: 61 vs. 120

More about LLMs

What is the future?

Data

* Effective size

* Privacy

* Fairness

* Contamination
* Ecosystem

Multi-Modality

* Input + output = multi-modal
e T2l: Dall-E, Stable diffusion
* |12T: GPT-4V

* Input = multi-modal
« CLIP

* OQutput = multi-modal

More on LLMSs...

* Parallelism

* Scaling law...(?)

* Other than transformers
* Ethical issues

Resources

* Courses
* https://stanford-cs324.github.io/winter2022/
* https://stanford-cs324.github.io/winter2023/

* Review papers
* https://arxiv.org/pdf/2303.18223
* https://arxiv.org/pdf/2307.06435

* Paper lists
* https://github.com/Hannibal046/Awesome-LLM

e Posts

* https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-
590c903e4789

https://stanford-cs324.github.io/winter2022/
https://stanford-cs324.github.io/winter2023/
https://arxiv.org/pdf/2303.18223
https://arxiv.org/pdf/2307.06435
https://github.com/Hannibal046/Awesome-LLM
https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-590c903e4789
https://medium.com/@yumo-bai/why-are-most-llms-decoder-only-590c903e4789

Thank You

Q&A

	Intro to LLMs
	Outline
	LM Background
	Language Models (LMs)
	Autoregressive LMs
	Autoregressive LMs generation
	Towards Large LMs (LLMs)
	Towards Large LMs (LLMs)
	LLM Timeline
	LLM Modeling and Pre-training
	Transformers
	Encoder-Only
	Encoder-Only: BERT-Large
	Decoder-Only
	Decoder-Only: GPT-3
	Encoder-Decoder
	Comparing LLMs
	The popularity of decoder-only (1/2)
	The popularity of decoder-only (2/2)
	Adapt LLMs to Downstream Tasks
	Towards Task-Specific LLMs
	Adaptation
	Probing
	Fine-tunning
	Lightweight Fine-tunning
	Prompting
	Prompting
	Prompting
	Selective Models
	Scaling Laws (OpenAI)
	GPT 3x → GPT 4o
	DeepSeek-V3
	DeepSeek-R1
	DeepSeek R1 vs GPT4o
	More about LLMs
	Data
	Multi-Modality
	More on LLMs…
	Resources
	Thank You

